I track my training to help me train enough to reach my goals while not training so much as to result in overtraining, long term exhaustion, and failure. Listening to my body is my best defense against that, but I find it useful to compare what my body is telling me to how much riding I have been doing to help me decide what rides to do next. The tricky bit is what "how much riding I have been doing" means. It's easy to track how many minutes I spend riding (Volume) and it seems reasonable that, all things being equal, a two hour ride will make me twice as fit (Fitness) and twice as tired (Fatigue) as a one hour ride but how fast I ride (Intensity) during those minutes also affects my levels of Fitness and Fatigue. In that case, however, the question of "By how much?" is not so easily answered. The units of Fitness and Fatigue are arbitrary, so as long as I track only minutes, I only need to worry about relative values, absolute values don't matter. But when I add how hard a ride was (how fast, how hilly, etc., known as Intensity) I am forced to ask how much an increase of speed of 1 miles per hour (for example) affects my Fitness and Form compared to the effect of adding 60 minutes to the length of that ride. Additionally, not only do Fitness and Fatigue increase in response to riding but both also decrease over time when I don't ride. Finally, how to Fitness and Fatigue interact? In my opinion, the answers to these questions are not known with certainty but I also feel like I should make my best guess to their answers and do the best that I can.
Load = Volume x Intensity.
One way to measure intensity uses Heart Rate and there are many different formulas of calculating Intensity from Heart Rate. I have compared several of these formulas and a number of them seemed fine. Given that, I decided to use the method proposed by Banister, thinking there might be some value in using the Intensity calculation and the accumulated Form, Fatigue, and Fitness model from the same author.
One disadvantage of the Banister method for calculating Load is that is more more complicated than it needs to be, in my opinion. That said, this complexity doesn't seem to make its estimates any worse and that once I coded this method into the spreadsheet I use to track my training, it didn't make tracking my training any harder, so this is what I am using for now to convert the heart rate I measure to Intensity.
In an attempt to make Banister's method easier to understand, I am going to break it up into pieces. The first thing to know is that the Banister method is based on Heart Rate Reserve (HRR), the difference between the lowest heart rate an athlete exhibits, the resting heart rate, and the highest heart rate they can attain:
HRR = Heart Rate Reserve = (Maximum Heart Rate - Resting Heart Rate)
Intensity is related to how much of that reserve an athlete uses during a particular level of exercise, what I call Fractional Heart Rate Reserve (FHR):
FHR = (Exercising Heart Rate - Resting Heart Rate) / (Maximum Heart Rate - Resting Heart Rate)
Finally, FHR is used to calculate Intensity:
Intensity = FHR x 0.64 x e(1.92 x FHR)
0.64 and 1.92 are constants that Banister provides.
I went back and recalculated all my Intensity measurements since I obtained my TranyaG0 sports watch in 2022 and the results consistent with my subjective impressions. Problem solved!
No comments:
Post a Comment